Application of quantum chemical approximations to environmental problems: prediction of water solubility for nitro compounds.

نویسندگان

  • Yana A Kholod
  • Eugene N Muratov
  • Leonid G Gorb
  • Frances C Hill
  • Anatoly G Artemenko
  • Victor E Kuz'min
  • Mohammad Qasim
  • Jerzy Leszczynski
چکیده

Water solubility values for 27 nitro compounds with experimentally measured values were computed using the conductor-like screening model for real solvent (COSMO-RS) based on the density functional theory and COSMO technique. We have found that the accuracy of the COSMO-RS approach for prediction of water solubility of liquid nitro compounds is impressively high (the errors are lower than 0.1 LU). However, for some solid nitro compounds, especially nitramines, there is sufficient disagreement between calculated and experimental values. In order to increase the accuracy of predictions the quantitative structure-property relationship (QSPR) part of the COSMO-RS approach has been modified. The solubility values calculated by the modified COSMO-RS method have shown much better agreement with the experimental values (the mean absolute errors are lower than 0.5 LU). Furthermore, this technique has been used for prediction of water solubility for an expanded set of 23 nitro compounds including nitroaromatic, nitramines, nitroanisoles, nitrogen rich compounds, and some their nitroso and amino derivatives with unknown experimental values. The solubility values predicted using the proposed computational technique could be useful for the determination of the environmental fate of military and industrial wastes and the development of remediation strategies for contaminated soils and waters. This predictive capability is especially important for unstable compounds and for compounds that have yet to be synthesized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of boiling point and water solubility of crude oil hydrocarbons using sub-structural molecular fragments method

The quantitative structure–property relationship (QSPR) method is used to develop the correlation between structures of crude oil hydrocarbons (80 compounds) and their boiling point and water solubility. Sub-structural molecular fragments (SMF) calculated from structure alone were used to represent molecular structures. A subset of the calculated fragments selected using stepwise regression (fo...

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

کاربرد نقاط کوانتومی به عنوان حسگرهای ترکیبات نیترو آروماتیک

Identifying minor amounts of explosives with sensitivity, selectivity, accuracy and speed can be a great advantage for applications related to national security and environmental monitoring.Unfortunately, identification with high reliability of explosives is still a challenge and is largely unfulfilled. Today, fluorescence-based methods are widely used to detect explosives and products derived ...

متن کامل

Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 24  شماره 

صفحات  -

تاریخ انتشار 2009